Renuel Roberts
DIIDevHeads IoT Integration Server
•Created by Renuel Roberts on 12/16/2024 in #🪲-firmware-and-baremetal
How to Ensure Reliable Data and Predictions for Skin Cancer Detection Using ESP32 and TCS3200?
import machine
import time
from machine import Pin
import random # Simulating the machine learning prediction
# Setup for TCS3200 Color Sensor
S2 = Pin(15, Pin.OUT)
S3 = Pin(2, Pin.OUT)
out = Pin(4, Pin.IN) # Output from sensor
S2.off()
S3.off()
# Initialize variables
color_data = {'red': 0, 'green': 0, 'blue': 0}
threshold = 50 # Example threshold for detecting cancerous cells
sensor_error = False
# Simulated AI-based cancer detection (replace with an actual ML model later)
def detect_cancerous_cells(color_data):
# Simulating a machine learning-based prediction for cancer detection
avg_color = (color_data['red'] + color_data['green'] + color_data['blue']) / 3
return random.choice([True, False]) if avg_color < threshold else False
def read_color():
# Dummy function to simulate reading from the TCS3200 sensor
# Replace with actual sensor reading logic
return {'red': random.randint(20, 80), 'green': random.randint(20, 80), 'blue': random.randint(20, 80)}
def calculate_average_color(color_data):
# Calculate the average color value from red, green, and blue components
return (color_data['red'] + color_data['green'] + color_data['blue']) / 3
# Main loop
while True:
try:
color_data = read_color()
print("Color Data:", color_data)
avg_color = calculate_average_color(color_data)
print("Average Color Value:", avg_color)
# Perform AI-based cancerous cell detection
cancer_detected = detect_cancerous_cells(color_data)
if cancer_detected:
print("Warning: Potential cancerous cells detected!")
else:
print("Skin pigmentation is within normal range.")
except OSError as e:
print("Error reading color sensor data. Check wiring or sensor condition.")
sensor_error = True
break
time.sleep(1)
import machine
import time
from machine import Pin
import random # Simulating the machine learning prediction
# Setup for TCS3200 Color Sensor
S2 = Pin(15, Pin.OUT)
S3 = Pin(2, Pin.OUT)
out = Pin(4, Pin.IN) # Output from sensor
S2.off()
S3.off()
# Initialize variables
color_data = {'red': 0, 'green': 0, 'blue': 0}
threshold = 50 # Example threshold for detecting cancerous cells
sensor_error = False
# Simulated AI-based cancer detection (replace with an actual ML model later)
def detect_cancerous_cells(color_data):
# Simulating a machine learning-based prediction for cancer detection
avg_color = (color_data['red'] + color_data['green'] + color_data['blue']) / 3
return random.choice([True, False]) if avg_color < threshold else False
def read_color():
# Dummy function to simulate reading from the TCS3200 sensor
# Replace with actual sensor reading logic
return {'red': random.randint(20, 80), 'green': random.randint(20, 80), 'blue': random.randint(20, 80)}
def calculate_average_color(color_data):
# Calculate the average color value from red, green, and blue components
return (color_data['red'] + color_data['green'] + color_data['blue']) / 3
# Main loop
while True:
try:
color_data = read_color()
print("Color Data:", color_data)
avg_color = calculate_average_color(color_data)
print("Average Color Value:", avg_color)
# Perform AI-based cancerous cell detection
cancer_detected = detect_cancerous_cells(color_data)
if cancer_detected:
print("Warning: Potential cancerous cells detected!")
else:
print("Skin pigmentation is within normal range.")
except OSError as e:
print("Error reading color sensor data. Check wiring or sensor condition.")
sensor_error = True
break
time.sleep(1)
5 replies