bilaal.qaasim
bilaal.qaasim
RRunPod
Created by bilaal.qaasim on 10/24/2024 in #⚡|serverless
Request queued forever
@flash-singh @Merrell
12 replies
RRunPod
Created by bilaal.qaasim on 10/24/2024 in #⚡|serverless
Request queued forever
I have already wasted around 50 bucks while retrying, is this an issue on runpods end?
12 replies
RRunPod
Created by bilaal.qaasim on 10/24/2024 in #⚡|serverless
Request queued forever
yes this is my first worker, it worked a couple of times but this forever queue is also faced multiple times, I can't share the exact worker code but below is the structure of my code def setup_environment(): token = os.getenv("DUMMY_TOKEN") # Perform any authentication or initialization pass def load_models(): # Load and initialize required models pass def validate_inputs(inputs): required_fields = ["user_text", "image_data"] for field in required_fields: if field not in inputs: raise ValueError(f"Missing required input: {field}") def process_image_data(image_data): if image_data.startswith("http"): return Image.open(requests.get(image_data, stream=True).raw).convert("RGB") else: return Image.open(BytesIO(base64.b64decode(image_data))).convert("RGB") def generate_images(prompt, input_image): outputs = [] for i in range(4): # Example loop for multiple generations # Placeholder logic for generating an image dummy_image = Image.new("RGB", (256, 256), color="gray") # Save and encode as Base64 path = f"/workspace/dummyoutput{i + 1}.jpg" dummy_image.save(path) outputs.append(file_to_base64(path)) return outputs def file_to_base64(file_path): with open(file_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode("utf-8") def handler(job): inputs = job.get("input", {})
try: validate_inputs(inputs) # Validate input data except ValueError as e: return {"error": str(e)} # Extract and process inputs user_text = inputs.get("user_text", "default text") image_data = inputs["image_data"] input_image = process_image_data(image_data) # Generate images (placeholder logic) outputs = generate_images(user_text, input_image) return {"outputs": outputs} setup_environment() load_models() runpod.serverless.start({"handler": handler})
12 replies